Hyers-Ulam-Rassias stability of generalized module left ( m , n ) -derivations
نویسندگان
چکیده
منابع مشابه
Hyers-Ulam-Rassias stability of generalized derivations
One of the interesting questions in the theory of functional equations concerning the problem of the stability of functional equations is as follows: when is it true that a mapping satisfying a functional equation approximately must be close to an exact solution of the given functional equation? The first stability problem was raised by Ulam during his talk at the University of Wisconsin in 194...
متن کاملGeneralized Hyers-Ulam Stability of Generalized (N,K)-Derivations
and Applied Analysis 3 Generalized derivations first appeared in the context of operator algebras 7 . Later, these were introduced in the framework of pure algebra 8, 9 . Definition 1.1. LetA be an algebra and let X be anA-bimodule. A linear mapping d : A → X is called i derivation if d ab d a b ad b , for all a, b ∈ A; ii generalized derivation if there exists a derivation in the usual sense δ...
متن کاملJ an 2 00 5 Hyers – Ulam – Rassias Stability of Generalized Derivations ∗
The generalized Hyers–Ulam–Rassias stability of generalized derivations on unital normed algebras into Banach bimodules is established. ∗2000 Mathematics Subject Classification. Primary 39B82; Secondary 46H25, 39B52, 47B47.
متن کاملGeneralized Hyers - Ulam - Rassias Stability of a Quadratic Functional Equation
In this paper, we investigate the generalized Hyers-Ulam-Rassias stability of a new quadratic functional equation f (2x y) 4f (x) f (y) f (x y) f (x y) + = + + + − −
متن کاملHyers–ulam–rassias Stability of a Generalized Pexider Functional Equation
In this paper, we obtain the Hyers–Ulam–Rassias stability of the generalized Pexider functional equation ∑ k∈K f(x+ k · y) = |K|g(x) + |K|h(y), x, y ∈ G, where G is an abelian group, K is a finite abelian subgroup of the group of automorphism of G. The concept of Hyers–Ulam–Rassias stability originated from Th.M. Rassias’ Stability Theorem that appeared in his paper: On the stability of the lin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2013
ISSN: 1029-242X
DOI: 10.1186/1029-242x-2013-208